7 条题解

  • 3
    @ 2022-2-10 15:36:15

    c++

    //
    #include<iostream>
    #include<cmath>
    #include<algorithm>
    #include<cstdio>
    using namespace std;
    typedef long long LL;
    const int MAXN = 1e6 + 10;
    const int INF = 0x3f;
    LL n, a[MAXN];
    LL stack[MAXN];
    LL l[MAXN], r[MAXN], top = 0;
    int main()
    {
    	start:cin >> n;
    	if(n == 0)return 0;
    	for (int i = 0;i < n; i++)
    	{
    		cin >> a[i];
    	}
    	top = 0;
    	a[0] = -1;
    	for(int i = 1;i <= n; i++)
    	{
    		while(top >= 0 && a[i] <= a[ stack[top - 1] ])
    			top--;
    		l[i] = top == 0 ? 0 : (stack[top - 1] + 1);
    		stack[top++] = i;
    	}
    	top = 0;
    	a[0] = -1;
    	for(int i = n - 1;i >= 0; i--)
    	{
    		while(top > 0 && a[i] <= a[ stack[top - 1] ])
    			top--;
    		r[i] = top == 0 ? 0 : (stack[top - 1]);
    		stack[top++] = i;
    	}
    	LL ans = 0;
    	for(int i = 1;i <= n;i++){
    		//cout << l[i] << ' ' << r[i] << ' ' << a[i] << endl;
    		ans = max(ans, (r[i] - l[i]) * a[i]);
    	}
    	cout << ans << endl;
    	goto start;
    }
    
    • 2
      @ 2022-1-19 16:08:02

      C++:

      #include<iostream>

      #include<cstdio>

      #include<algorithm>

      using namespace std;

      int q[100001];

      int a[100001];

      int n,t;

      int ll;

      //int h[100001];

      int l[100001];

      int r[100001];

      void make(int an[100001])

      { //int l=1;

      ll=0;
      
      a[0]=-1;
      
      for(int i=1;i<=n;i++)
      
      {
      
      	while(a[q[ll]]>=a[i])
      
      	{
      
      		ll--;
      
      	}
      
      	an[i]=q[ll];
      
      	q[++ll]=i;
      
      }
      

      }

      long long maxn;

      int main()

      {

      while(scanf("%d",&n))
      
      {
      
      	if(n==0)
      
      	{
      
      		return 0;
      
      	}
      
      	for(int i=1;i<=n;i++)
      
      	{
      
      		scanf("%d",&a[i]);
      
      	}
      
      	a[0]=-1;
      
      	make(l);
      
      	reverse(a+1,a+1+n);
      
      	make(r);
      
      	//int j=n;
      
      	maxn=0;
      
      	for(int i=1,j=n;i<=n;i++,j--)
      
      	{
      
      		maxn=max(maxn,a[i]*(n-l[j]-r[i]+1-(long long)(1)));
      
      	//	j--;
      
      	}
      
      	printf("%lld\n",maxn);
      
      }
      

      }

      • 1
        @ 2021-8-7 19:00:39

        C++ :

        #include<iostream>
        #include<algorithm>
        #include<vector>
        #include<stack>
        
        using namespace std;
        typedef long long ll;
        const int N = 1e5 + 5;
        
        int n;
        int h[N], q[N], l[N], r[N];
        
        void get(int bound[N])
        {
            int tt = 0;
            h[0] = -1;
            for(int i = 1; i <= n; i ++ ){
                while(h[q[tt]] >= h[i]) tt -- ;
                bound[i] = q[tt];
                q[ ++ tt] = i;
            }
        }
        
        int main()
        {
            while(cin >> n, n){
                for(int i = 1; i <= n; i ++ )
                    cin >> h[i];
                //立一个标兵在队头
                h[0] = -1;
                get(l);
                reverse(h + 1, h + n + 1);
                get(r);
        
                ll res = 0;
                //因为之前翻转了一下,所有原本的下标变成了对称位置的下标,1ll是long long 形式的1
                for(int i = 1, j = n; i <= n; i ++, j -- )
                    res = max(res, h[i] * (n + 1 - l[j] - r[i] - 1ll));
                cout << res << endl;
            }
            return 0;
        }
        
        • 0
          @ 2024-1-27 11:46:22

          因为对于一个高度 hih_i, 我们往左边一直以这个高度延伸,直到不行,再往右边进行一样的操作

          那么什么时候不行呢,就是当想要继续延伸的块高度比hih_i

          左边的极限就是 hl  (hl1<hi)h_l \ \ (h_{l-1}<h_i) 右边的极限就是 hr  (hr+1<hi)h_r \ \ (h_{r+1}<h_i)

          那么以 ii 为原点往左右两边延伸的最大面积就是(rl+1)hi(r-l+1)*h_i

          我们使用单调栈即可求出 l1l-1r+1r+1,我们暂时记为 ans1ans1ans2ans2

          那么上述提到的面积就是(ans2ans11)hi(ans2-ans1-1)*h_i 自己推导一下就知道了


          AC CODE

          #include <bits/stdc++.h> 
          using namespace std;
          const long long N = 1e5+10,INF = 0x3f3f3f3f;
          long long a[N],ans[N],ans2[N],st[N],n,top,res,tmp;
          void calc1(){
          	for(long long i = 1; i <= n; i++){
          		while(top>0&&a[i]<=a[st[top]])top--;
          		ans[i]=st[top];st[++top]=i;
          	}//单调栈模版,但是>=改成<=以达到效果 
          }
          void calc2(){
          	for(long long i = n; i >= 1; i--){
          		while(top>0&&a[i]<=a[st[top]])top--;
          		ans2[i]=st[top];st[++top]=i;
          	}//单调栈模版,但是>=改成<=以达到效果 
          }
          void solve(){
          	cin >> n;
          	if(n==0)exit(0);
          	top = 0, res = 0, a[0]=a[n+1]=-INF;
          	for(long long i = 1; i <= n; i++)cin >> a[i];
          	top = 0;st[++top]=0;calc1();//计算ans1 
          	top = 0;st[++top]=n+1;calc2();//计算ans2 
          	for(long long i = 1; i <= n; i++)res = max(res,(ans2[i]-ans[i]-1)*a[i]);
          	cout << res << '\n';
          }
          signed main(){
          	while(1+1==2)solve();
          	return 0;
          }//完美30行结束 
          
          • -1
            @ 2023-5-26 17:23:36

            思路:

            我们找到左边第一个比他小和右边第一个比它小的,就可以得知这个高度的矩形的宽**
            

            代码:

            #include<iostream>
            #include<stack>
            #define int long long
            using namespace std;
            stack<int> st;
            int h[100005],n,to,l[100005],r[100005],ans;
            signed main(){
                while(cin>>n,n){
                    for(int i=1;i<=n;i++) cin>>h[i];
                    h[0]=-1;
                    st.push(0);
                    for(int i=1;i<=n;i++){
                        while(!st.empty()&&h[i]<=h[st.top()]) st.pop();
                        l[i]=st.top();
                        st.push(i);
                    }
                    while(!st.empty()) st.pop();
                    h[n+1]=-1;
                    st.push(n+1);
                    for(int i=n;i>=1;i--){
                        while(!st.empty()&&h[i]<=h[st.top()]) st.pop();
                        r[i]=st.top();
                        st.push(i);
                    }
                    ans=0;
                    for(int i=1;i<=n;i++){
                        ans=max(ans,(r[i]-l[i]-1)*h[i]);
                    }
                    cout<<ans<<endl;
                }
                return 0;
            }
            
            
            
            • -3
              @ 2022-2-9 20:09:03

              #include<cstdio> #include<stack> #include<iostream> #include<algorithm> using namespace std; int n,h[100000],ans=0,x; stack<int>st; bool va(int xx){ if(st.empty()){ return false; } else return st.top()>h[xx]; } int main(){ while(cin>>n &&n){ for(int i=1;i<=n;i++){ scanf("%d",&h[i]); } h[n+1]=-1; st.push(h[1]); for(int i=2;i<=n+1;i++){ x=0; while(va(i)){ x++; ans=max(x*st.top(),ans); st.pop(); } st.push(h[i]); } printf("%d\n",ans);} }

              本体思路太蒟蒻

              • -4
                @ 2022-1-19 15:24:47

                #include<stdio.h> #include<string.h> #include<stack> using namespace std; typedef long long ll; const int N = 1e5 + 5; ll l[N], r[N]; ll a[N]; int n; stack<ll> s; int main(){ while(scanf("%d",&n) && n){ while(!s.empty()) s.pop(); for(int i=1; i<=n; ++i){ scanf("%lld",&a[i]); l[i] = r[i] = i; } a[0] = a[n+1] = -1;

                	for(int i=1; i<=n; ++i){
                		while(!s.empty() && a[i] <= a[s.top()])
                	    s.pop();
                	    if(s.empty()) l[i] = 0;
                	    else  l[i] = s.top();
                	    s.push(i);
                	}
                	
                	while(!s.empty())  s.pop();
                
                	for(int i=n; i>=1; --i){
                		while(!s.empty() && a[i] <= a[s.top()])
                	    s.pop();
                	    if(s.empty())  r[i] = n+1;
                    	else  r[i] = s.top();
                	    s.push(i);
                	}
                
                	ll sum, max = -1;
                    for(int i=1; i<=n; ++i){
                        sum = (r[i] - l[i] - 1) * a[i];
                        if(sum > max) max = sum;
                    }
                    printf("%lld\n",max);
                }
                return 0;
                

                }

                • 1

                信息

                ID
                42
                时间
                1000ms
                内存
                128MiB
                难度
                5
                标签
                递交数
                211
                已通过
                85
                上传者