#532. 礼物

礼物

题目描述

原题来自:BZOJ 2142

一年一度的圣诞节快要来到了。每年的圣诞节小 E 都会收到许多礼物,当然他也会送出许多礼物。不同的人物在小 E 心目中的重要性不同,在小 E 心中分量越重的人,收到的礼物会越多。

小 E 从商店中购买了n\red{ n}件礼物,打算送给m\red{ m} 个人,其中送给第i\red{ i }个人礼物数量为wi\red{ w_i}。请你帮忙计算出送礼物的方案数(两个方案被认为是不同的,当且仅当存在某个人在这两种方案中收到的礼物不同)。由于方案数可能会很大,你只需要输出模P\red{ P }后的结果。

输入格式

输入的第一行包含一个正整数P\red{ P},表示模数;

第二行包含两个正整数n\red{n}m\red{ m},分别表示小 E 从商店购买的礼物数和接受礼物的人数;

以下m\red{ m} 行每行仅包含一个正整数wi\red{ w_i},表示小 E 要送给第 i\red{i }个人的礼物数量。

输出格式

若不存在可行方案,则输出 Impossible,否则输出一个整数,表示模P\red{ P} 后的方案数。

样例

输入数据 1

100
4 2
1
2

输出数据 1

12

12\red{12 }种方案详情如下:{1}{2,3},{1}{2,4},{1}{3,4},{2}{1,3},{2}{1,4},{2}{3,4},{3}{1,2},{3}{1,4},{3}{2,4},{4}{1,2},{4}{1,3},{4}{2,3}\red{ \{1\}\{2,3\},\{1\}\{2,4\},\{1\}\{3,4\},\{2\}\{1,3\},\{2\}\{1,4\},\{2\}\{3,4\},\{3\}\{1,2\},\{3\}\{1,4\},\{3\}\{2,4\},\{4\}\{1,2\},\{4\}\{1,3\},\{4\}\{2,3\}}


数据范围与提示

P=p1c1×p2c2×p3c3××ptct\red{ P=p_1^{c_1} \times p_2^{c_2} \times p_3^{c_3} \times \cdots \times p_t ^{ c_t}}pi\red{p_i }为质数。

对于100%\red{ 100\% }的数据,1n109\red{1\le n\le 10^9},1m5\red{1\le m\le 5},1pici105\red{1\le p_i^{c_i}\le 10^5}